
PURPOSE
Scale-up of blending unit operations from the laboratory scale to commercial scale can be 
challenging. Use of predictive tools for simulation of blending processes can be valuable in drug 
product manufacturability. We provide a mechanistic model based on Discrete Element Method 
(DEM) for a pharmaceutical blending processes. This model can successfully predict the 
operating ranges a priori to running the actual process and avoids a trial-and-error approach. 
This predictive model allows for the calculation of critical process parameters and performance 
early in the blending process.

Simulated design of experiments were conducted to evaluate process scale-up for the 
V-blender from 1.2L to 2.5L and 10L as shown in the following figures. RESULTS

The experimental FT4 test results include Basic Flow Energy (BFE), Specific Energy (SE) and 
Conditioned Bulk Density (CBP).  Using ANN we trained a model on DEM FT4 simulation which had 
high 𝑅2 values > 0.98 for the training and validation tests shown in Figure 1 (middle). The effects of 
each variable on the flow characteristics of the powder are shown in Figure 2.

METHODS
The simulation of a pharmaceutical blending unit operation is developed based on a visco-
elastoplastic frictional adhesive DEM model. First, an FT4 powder rheometer (Freeman 
Technologies) was used to characterize the mechanical properties of the powders in the Z160 
formulation. The FT4 test was replicated using EDEM software (DEM Solutions Ltd.), and the 
contact model parameters of each powder were optimized to reproduce the experimental 
measurements using a space-filling design of experiments (DOE) as shown in Figure 1. 
Leveraging machine learning techniques, a response model based on an artificial neural network 
(ANN) was trained on the results from 180 FT4 simulations. This response model was used to 
determine the input parameters that provided the best fit to the experimental measurements. 
This validated DEM model was then used to simulate a laboratory-scale V-blender containing the 
Z160 formulation. Changes in operating space that occur during the scale-up process were then 
identified by modeling a Pilot-scale V-blender.

CONCLUSIONS

➢ This work demonstrates the utility of DEM for modeling of pharmaceutical 
blending unit operations. This approach enables process simulation and mapping 
prior to experimentation and aids in optimization and scale-up. 

➢ The DEM model was validated using a combination of experimental results from 
FT4 measurements and machine learning methods. Critical material properties 
were identified that play a significant role in blending performance.

➢ Critical process parameters were identified by statistical studies and showed 
dependence on blender size, fill level and the rotation rate.

OBJECTIVES
Our objectives in developing this mechanistic modeling of a blending process were two-fold:

1. Develop a systematic DEM model parameter calibration method by training an artificial neural 
network (ANN) on laboratory scale data for a spray-dried dispersion of a model compound, Z160,

2. Use the validated DEM model to simulate a V-blender process to identify the critical material 
attributes, process parameters and to evaluate the change of operating space during scale-up.
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Figure 1. DEM simulation of the FT4 powder rheometer (left). Prediction accuracy of the ANN model (middle). 
Structure of the single-layer ANN model with 15 hidden nodes and TanH activation functions (right). 

Figure 2. Prediction profiler showing the effects of independent variables, Particle radius (R), Shear modulus (G), Restitution
coefficient (e), Particle-particle static friction (μsp−p), Constant pull-off force (f0), Cohesive surface energy (Δγ), Particle solid
density (ρs), Particle-wall static friction (μsp−g) and Particle-blade static friction (μsp−b) on the FT4 responses.

Calibrated DEM models based on FT4 simulations were 
used to simulate a 1.2L laboratory-scale V-blender for 
the formulation of Z160 (Table. 1). These simulations 
are shown in Figure 3. Images in the top row show the 
state of the final blend after 1-minute blending time at 
RPM 15 with fill levels of 30, 50 and 75%. Images at the 
bottom show the concentration of API by the means of 
bin analysis, with red representing the highest Z160 
concentration. An obvious deviation was identified 
between fill level 30% to 75%. This indicates that fill 
level is a critical process parameter that impacts blend 
uniformity. These same results can also be quantified 
by the Coefficient of Blending (CBP) Performance 
which is a computational micro-scale index.

Z160 Formulation
Unit 

Comp.

Component wt%

40:60 Z160:PVP-VA64 SDD 49.0%

Lactose Monohydrate FlowLac 90 30.0%
Microcrystalline Cellulose (Avicel PH-105) 14.0%

Kollidon CL (Crospovidone) 5.0%

Colloidal Silicon Dioxide (Cab-O-Sil M-5P) 1.0%

PRUV Sodium Stearyl Fumarate (SSF) 1.0%

Total: 100.0%

Table 1. Z160 model compound prototype formulation 

Figure 3. Snapshots of the final blends in 1.2 L V-Blenders after 1min 
blending with RPM=15 and various fill levels (top). Concentration of API, 
with red representing the highest concentration (bottom).

Red=API
Yellow=Excipients 

CBP provides information on the 
contact number of similar and 
dissimilar particles. As illustrated in 
Figure 4, after 1 min of blending with 
RPM 15, the CBP shows better mixing 
quality for the 30% fill level. 

Figure 4. CBP vs. number of revolutions across 
different fill levels in 1.2 L V-blenders with RPM=15.

Scaling-up from 1.2L to 10L 
blender at constant 
rotation rate (RPM 15) has 
a larger impact on the 
blending performance (20% 
increase) at a 75% fill level 
(right) compared to a 30%  
fill level (left).  

This figure shows the 
mixing performance of 
1.2L and 10L blenders 
when increasing the fill 
level from 30-75%.
Increasing fill level has a 
larger impact in the 1.2L 
blender when compared to 
the 10L blender.  

The low p value indicates a significant effect. The 
most significant interaction was Size × Fill (p=0.04) 
indicating size dependence of the fill effect in mixing 
performance.


